Research on the Implementation of Branching-Bounding Algorithm 分支与定界算法的实现研究
The branching factor of a regular search tree has a decisive effect on the time complexity of a search algorithm. 正则搜索树的分支因数对算法的复杂度有决定性影响。
The improved estimation precision of the optimal value further increases the reduction efficiency, and eventually decreases the branching depth of the branch-and-bound algorithm. 通过提高目标函数的估计精度,利润欺骗法可以提高变量约简效率,降低分支决策深度。
Through the analysis of the data, using the A-branching factor analysis the different behaviors of ant system algorithm and improved algorithm in different parameters sets. verified the optimization of the search behavior through the use of the candidate list. 通过对仿真实验数据的分析,使用λ-分支因子法分析了基本蚁群算法与改进算法在不同的参数设置下的搜索行为的差异,验证了候选列表对于算法搜索行为的优化。